An extremal property for a class of positive linear operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extremal property of Bernstein operators

We establish a strong version of a known extremal property of Bernstein operators, as well as several characterizations of a related specific class of positive polynomial operators. © 2006 Elsevier Inc. All rights reserved. MSC: 41A36; 26D15

متن کامل

About a class of linear positive operators

In this paper we construct a class of linear positive operators (Lm)m≥1 with the help of some nodes. We study the convergence and we demonstrate the Voronovskaja-type theorem for them. By particularization, we obtain some known operators. 2000 Mathematics Subject Classification: 41A10, 41A25, 41A35, 41A36.

متن کامل

On a General Class of Linear and Positive Operators

Suppose that (Lm)m≥1 is a given sequence of linear and positive operators. Starting with the mentioned sequence, the new sequence (Km)m≥1 of linear and positive operators is constructed. For the operators (Km)m≥1 a convergence theorem and a Voronovskaja-type theorem are established. As particular cases of the general construction, we refined the Bernstein’s operators, the Stancu’s operators, th...

متن کامل

Some Extremal Problems for Positive Definite Matrices and Operators

Let C be a real-valued function defined on the set 9& of all positive definite complex hermitian or real symmetric matrices according as F = C (the complex field) or F = R (the real field). Suppose A, B E 9&. We study the optimization problems of (1) finding max C(X) subject to A X, B X positive semidefinite, (2) finding minG(X) subject to X A, X B positive semidefinite. For a general class of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2010

ISSN: 0021-9045

DOI: 10.1016/j.jat.2009.02.006